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Climate Model Development strategy
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UTopics: turbulence, clouds, convection,radiation

U Methodology:

DALES

3d RACMO-2
limited area version of

Single Column Model

Large Eddy Simulation Models

version

+ Observations

ECMWF-model”

Internationally embedded in: GEWEX Cloud System Systems (GCSS)

Q

(www.gewex.org/gess.html)




GCSS (WGH1) bl-clouds Cases:

Parameterization

Type Case
P Issues adressed:
Nocturnal Scu FIRE Top-entrainment
(1987) P
Shallow Cu BOMEX Mass flux, cloud cover,
(steady state) (1969) lateral entrainment
Shalowcu | ATEX | Mase flx cloud cover
topped with Scu (1971) entrainment
Shallow Cu ARM Mass flux, cloud cover,
(Diurnal Cycle) | (June 21, 1997) | lateral entrainment
Scu FIRE Top-entrainment,
(Diurnal Cycle) (1987) Radiation
Scu DYCOMS Top-entrainment,
eoes Radiation,
(precipitating) (2001)

Precipitation




**** LES widely used within GCSS to study turbulent
transport in Cloud topped PBL

N
@)
=
S
3
—
~
Z
0
Q.
(D
=1
QO
>
(oR
W
=
M
—+
M
O
-
O
O
g
wn
0O
>
>
Vg
<.
(3
<
<
—



AN

)
0000 ———
I

3. Is this a Cloud?? KNM

How to answer this question?
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$
. KNMI
Area-Perimeter analyses of cloud patterns

‘Pioneered by Lovejoy (1981)
Area-perimeter analyses using satellite and radar data

‘Suggest a perimeter dimension Dp=4/3 of projected clouds

Instead of
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4. Similar analysis with LES clouds KNM

‘Measure Surface AS and linear size /= J''"> of each cloud

*Plot in a log-log plot e

o A OCIDS

S

Assuming isotropy, observations would suggest Ds=Dp+1=7/3
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5. Result of one cloud field
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Repeat over 6000 clouds
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eee+ 7. Consequences KNMI

Surface area can be written as a function of resolution I:
2-D,

S() = SL(%) with D_=17/3

Euclidian area SL underestimates true cloud surface area
S(I=h) by a factor (W/L )Z—Ds ~100

LES model resolution of I=50m underestimates cloud surface
area still by a factor 5!



8. Resolution dependence IO for
transport over cloud boundary (1)

Transport = Contact area x Flux

T(4,) = SU) FUy)  =-5(,) K(zo)%

turbulence diffusive flux

%

Sth) K%
X

)

KNM



8. Consequences for transport .,
over cloud boundary (2) KNMI

T(,) =SU,) F(l,) =-S(,)K(, )—

S() =S, K(,)=1,0u(l,)) =, (5u(L)(L)

\( - ) A)hardson Law)

1 7\7/3-D;
T(ly) = Ac 6u(L)S(L)(fO) 111

eeee  No resolution dependancy for Ds=7/3!! Coincidence??
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Conclusions K

* LES models simulate the correct cloud geometry
*Cloud surface dimension D_s =7/3

*Transport over cloud boundaries are scale independent
within LES

*Repeating scaling arguments for |,=h can be used as a
heuristic proof for D_s = 7/3 (Use Reynolds number
similarity (Sreenivasan et al, Proc Soc. London (1989)



Cloud size distributions

2%

*Many observational studies:

*Exponential (Plank 1969, Wielicki and Welch 1986)
*L.og-normal (Lopez 1977)

Power law (Cahalan and Joseph 1989, Benner and Curry 1998)
N()
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ccce Cloud size distributions (2)

‘Repeat with LES. Advantages
Controlled conditions

-Statistics can be made arbitrary accurate

Link with dynamics can be establishef

N(1)

*Specific Questions:

‘What is the functional form of the pdf? ] —
‘What is the dominating size for the cloud cover?

*Which clouds dominate the vertical transport?



Definitions:

height

vertical p
projection A

Total number of clouds:

Cloud fraction:

Projection area of cloud n:

Size : ln = \@

i
KNMI
p
Al’l

N E}N(z )dI

a Ej'oc(l )di

>N(1)

Related through: o(/ ) =
gh:a (1) LL




e (Cloud Size Density Yi:I'ql
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10000.

Number of clouds sampled: 35000

KNM

 Power law with b=-1.7

N(I) o’

*Scale break 1n all cases

e Scale break size [ , case
dependant (700m~1250m)



*e** Cloud size density (2) K
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*Universal pdf when
rescaled with scale-
break size Id



.« Cloud Fraction density

-4,

— BOMEX

........ SCMS hr3

— — — ARM 19.00-20.00utc
lineor fit of Fig.4c 4

Dominating size

aaal

100. 1000.
size | [m]

10000.

N
seos |

KNM

a(l)=N(I* = "

With b=-1.7 (until scale break size)

* b<-2 smallest clouds dominate cloud cover

* b>-2 largest clouds dominate cloud cover

Due to scale break there 1s a intermediate dominating size
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ccoe Conclusions A,

KNMI
Cloud size distribution: N (] ) o [” with b=-1.7

Non-universal scale break size beyond which the number density
falls off stronger. (Only free parameter left)

*No resolution dependency has been found (see paper)

sIntermediated cloud size has been found which dominates the cloud
fraction.

Open Questions:

‘What is the physics behind the power
law of the cloud density distribution?

‘What is causing the scale break?



How to use this cloud variability to build cloud and &
radiation parameterizations? : KNMI

BOMEX

w (ms™)

/"\ /_? inversion

£ -
A\ N

200 400 600 300 1000
seconds (s)

q: (9 kg™

Statistical cloud schemes T

qt




coce Statistical Cloud Schemes (2): :_TA

KNMI

Convenient to introduce:

“The distance to the saturation curve”
s=q,-q,(p,T)

Normalise s by its variance:

qt qs Sommeria and Deardorf (JAS,1976)
O

S
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-«e« Verification (with LES) Yﬁ’qn

KNM
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0 Gaussian b, -
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Cloud cover

Bechtold and Cuijpers JAS 1995
Bechtold and Siebesma JAS 1999 Q
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eeee Verification (with Observations)
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Remarks:

Gaussian PDF “good enough™ to estimate liquid
water and cloud cover.

Correct limit: 1t dx = 0 theno, = 0 and the
scheme converges to the all-or-nothing limit

Parameterization problem reduced to finding the
subgrid variability, 1.e. finding O, .

2%



—— KNMI
qd: — 4
a,= f(E—)
— S_ R(at’as)
q4. — 4
q, =g )
Convection and
turbulence —® Cloud scheme: —® radiation scheme:
parameterization give
estimate of o, McICA by employing

the variance

-Subgrid variability (at least the 2"9 moment) for the thermodynamic
variables needs to be taken into acount in any GCM for parameterizations
of convection, clouds and radiation in a consistent way.

At present this has not be accomplished in any GCM.



o, =0
All or nothing

Horizontal length skale {km)
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How does the variability change with resolution? KNMI

LES

minute day vear  century
I [ ]
GCM wlobal
climarte
COn
varialions
synoplic El Nino
weather occan
syslems cireularion
1 breczo
almosphere-land
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Calculate in LES : <O . (l)>
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How about Stratocumulus?

-1
<G_ > [gkg lo
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® ® @ @)/o0d, Field and Cotton 2002 Atm. Research
Davies, Marshak and Cahalan JAS 53 1996

10.0 100.0

Observations give :

Standard deviation of
s (=qt-gs) scales as

from 100m up to 100km,
consistent with a 5/3
spectrum over this range.

Mesoscale Organisation!!

How about LES??
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. . 3
Large-Eddy Simulations KYI:-_T;“
eParallelized version

e Large horizontal domain 25.6 x 25.6 km?
. . Nocturnal stratocumulus cloud
* Number of grid points 256 x 256 x 80 layer, initialization based on

e Ax = Ay = 100m, Az <20 m observations (FIRE I)

e Cylic boundary conditions

e Simulation time 10 hours
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25.6 km

LES does show mesoscale growl’f

Liquid water path evolution in stratocumulus simulation
25.6 km

t=6hrs t=8hrs

I
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qt-variance (normalized)

1000

100

fp—
o

Same analysis as Wood et. al
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*Variance grows with
scale and time

‘But .... Not with the
expected scaling!!
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Conclusions

*LES does produce realistic cloud structures

*GCSS provides a large data set of 3d cloud scenes that can
be used for radiative transfer studies

«GCM'’s are still in a poor state concerning cloud
inhomogeneity effects

-Simultaneous measurements of cloud structures and
radiation measurements offers a strong constraint for cloud-
radiation effects that will reduce the infamous “tuning-
freedom”



eATEX :

Marine

Cumulus
Topped
With

Scu

Courtesy : Dave Stevens ; Lawrence Livermore National Laboratory



Latitude

EUROCS Model Evaluation:

Hadley Circulation in the Pacific:
o Well defined large scale circulation
o Monthly mean deviations from climatology relatively small

« All studied cloud types within EUROCS are present in well
geographically seperated way.

o Future Changes in Climate for Europe are connected with changes
in the Hadley Circulation (see Dutch Challenge Project)

Use JJA 1998 as an example:
o o Monthly means for JJA 1998

for 13 gridpoint columns.
required output. vertical profiles
Uy N single level
: | - " [ parameters
- DN e o . |
s | . JANGIASEVAVINAVINAY, ) © <
e =« (Siebesma and coauthors:QJRMS
: .~ = november2004.)
i ~— - = www.knmi.nl/samenw/eurocs

Longitude



Liquid water Path
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Suetace downward shortwave Radiation
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Liquid water Path
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Transmissivity
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Svatter plot: LWP versus Transmissivity. ki
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local time
e Clouds in MetO and

ECHAM are too reflective

e Differences in radiation
schemes! Tuning?!



LES run of diurnal cycle of cumulus:
ARM site Oklahoma June 21 1997
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cloud cover
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Not a complete demonstration of the fact that cloddEv
are fractal! Nature could play the following trick om

us.

A=2xrh
@ L, V =x 7”2 ]’l
— Remember: [=V"">
h — ﬂ
> — — D 3(14a)
> 2+0
r o A x|
hor 1 —

with o =5/2
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6. Direct measurement of correlation dimension

C(z)=%9Q-\xi-xj\)« 0P

7
10" T 17/3 T

= 5L i
O 10
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b 50 100 200300 500 1000 2000
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**** Large Eddy Simulation (LES) Modelling  ¢NMmi

« High Resolution Non-hydrostatic Model:

~50m

o Large eddies explicitly resolved by NS-equations
« Inertial range partially resolved

« Therefore: subgrid eddies can be realistically parametrised
by using Kolmogorov theory

T

In(Energy)

In(wave number) —»

Inertial
Range Resolution
5 t LES

Diss
Rang

ipation
e

I;' ~1km™

-1 -
[, =1lmm



CLOUDS in GCM’s: What are the problems?  KNMI

*Many of the observed clouds
and especially the processes
within them are of sub grid-
scale size.
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KNMI

Neglecting this subgrid variability causes biased
errors in a number of key processes:

*Moist convection of heat and moisture
*Cloud Properties

*Radiative Transport



LWP (g/m2)

Cloud albedo bias

Plane parallel cloud
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Neglecting Cloud inhomogeneity causes a positive bias in
the cloud albedo.




AN

)
0000 ———

KNM

*Subgrid variability (at least the 2" moment) for the
thermodynamic variables needs to be taken into acount in any
GCM for parameterizations of convection, clouds and radiation
In a consistent way.

At present this has not be accomplished in any GCM.

-Large Eddy Simulations (LES) in combination with observations
is a useful tool to obtain this subgrid variability and to help
develop GCM parameterizations for these cloud related
processes.

*GEWEX Cloud System Studies (GCSS) explores this
avenue (www.gewex.org/gess.html)




How to obtain a parameterization for the variance?

ﬂVh
Link it to the convection/turbulence schemes using a variance KW

budget.

Production  Dissipation

I ! aqt -1 12
w =T
qt aZ qt T = ¢ cloud/

@ W= [ EMAG dz

cloud

Grant&Brown QJRMS 1999

— cu -

0q, W, 2

= ¢

oz |

cloud

M(q," -q,)

—~ M(¢™ -7 07
Final Result: sz = (QZ cu qf) lcloud 1
XXX W, 0z
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LES domain size: How large is large enough?
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Spectra in stratocumulus

¢ Different domain sizes L



